Nutri-Fit Спортивное питание и консультации

Статьи

Виктор Селуянов. Тренировки по науке. Часть вторая.

Автор: Андрей Антонов

Сегодняшней публикацией мы продолжаем цикл бесед с профессором Виктором Николаевичем Селуяновым посвященный современным биологически обоснованным научным методам тренировок.

Здравствуйте, Виктор Николаевич! Давайте продолжим нашу беседу. Расскажите о методах гиперплазии миофибрилл в мышечных волокнах, теме, наиболее интересующей читателей нашего журнала.

Цель силовой подготовки — увеличить число миофибрилл в мышечных волокнах. Достигается это с помощью хорошо известной силовой тренировки, которая должна включать упражнения с 70–100% интенсивностью, каждый подход продолжается до отказа. Это хорошо известно, однако смысл такой тренировки, процессы, разворачивающиеся в мышцах в ходе выполнения упражнений и при восстановлении, раскрыты еще недостаточно полно.
Силовое воздействие человека на окружающую среду — есть следствие функционирования мышц. Мышца состоит из мышечных волокон — клеток. Для увеличения силы тяги МВ необходимо добиться гиперплазии (увеличения) миофибрилл. Этот процесс возникает при ускорении синтеза и при прежних темпах распада белка.

В физиологической литературе имеются материалы по изучению различных факторов, влияющих на рост силы. Обобщение их приводит практиков к мысли, что механическое напряжение в мышце является стимулом к гиперплазии миофибрилл. Надо отметить, что это мнение явно порочное, поскольку взято из экспериментов на животных, которым делали операции и заставляли удерживать часами, непрерывно какие-либо механические нагрузки. В этом случае животные испытывают колоссальный стресс, выделяется много гормонов, следовательно, не от напряжения мышц, а от повышения концентрации гормонов растет сила. На основе результатов этих «животных» экспериментов появились методики «негативных» нагрузок (преодоление веса большего максимальной силы), эксцентрические тренировки, например, прыжки в глубину с отскоком вверх (Ю.В.Верхошанский по данным диссертационного исследования В.Денискина). Эти идеи появились еще 20 лет назад, но данных о морфологических изменениях в МВ после эксцентрических тренировок пока не представлено.

Какие же основные факторы влияют на рост мышечной массы?

Более внимательный анализ физиологических исследований последних лет позволили выявить четыре основных фактора, определяющих ускоренный синтез белка (образование и-РНК в ядре) в клетке:

1) Запас аминокислот в клетке.
2) Повышенная концентрация анаболических гормонов в крови (мышце).
3) Повышенная концентрация "свободного" креатина в МВ.
4) Повышенная концентрация ионов водорода в МВ.

Второй, третий и четвертый факторы прямо связаны с содержанием тренировочных упражнений.
Механизм синтеза органелл в клетке, в частности миофибрилл, можно описать следующим образом.
В ходе выполнения упражнения энергия АТФ тратится на образование актин-миозиновых соединений, выполнение механической работы. Ресинтез АТФ идет благодаря запасам КрФ. Появление свободного Кр активизирует деятельность всех метаболических путей, связанных с образованием АТФ (гликолиз в цитоплазме, аэробное окисление в митохондриях, которые могут находиться рядом с миофибриллами, или в ядрышке, или на мембранах СПР). В БМВ преобладает М-ЛДГ, поэтому пируват, образующийся в ходе анаэробного гликолиза, в основном трансформируется в лактат. В ходе такого процесса в клетке накапливаются ионы Н. Мощность гликолиза меньше мощности затрат АТФ, поэтому в клетке начинают накапливаться Кр, Н, La, АДФ, Ф.
Наряду с важной ролью в определении сократительных свойств в регуляции энергетического метаболизма, накопление свободного креатина в саркоплазматическом пространстве служит мощным эндогенным стимулом, возбуждающим белковый синтез в скелетных мышцах. Показано, что между содержанием сократительных белков и содержанием креатина имеется строгое соответствие. Свободный креатин, видимо, влияет на синтез и-РНК, т.е. на транскрипцию в ядрышках МВ. В лаборатории биохимии ПНИЛ ГЦОЛИФК было показано, что применение препаратов креатина при подготовке спринтеров позволил в течение года достоверно улучшить спортивные результаты в спринте, прыжках, однако показатели аэробных возможностей стали хуже.

То есть при тренировках на выносливость дополнительный прием препаратов креатина не целесообразен? А с чем это связано? Ведь производители спортивного питания всегда подчеркивают рост выносливости при приеме препаратов этой группы.

Это поспешный вывод. Оценка аэробных возможностей проводилась по МПК (максимальному потреблению кислорода). Это способ порочный – МПК зависит, от массы активных митохондрий в работающих мышцах, дыхательной мускулатуре и миокарде. Для оценки потребления кислорода активными мышцами надо определять потребление кислорода на уровне анаэробного порога. На самом деле КрФ является челноком, транспортирующим энергию от митохондрий к миофибриллам, поэтому повышение концентрации КрФ в МВ, после приема креатинмоногидрата,  существенно повышает работоспособность спортсменов на всех режимах работы, а именно, от спринта до стайерского бега.

Продолжим обсуждение факторов, влияющих на гиперплазию миофибрилл..

Важнейшим фактором, усиливающим гиперплазию миофибрилл, является повышение анаболических гормонов в крови, а затем в ядрах клеток активных тканей. Этот факт опробовали на себе практически все штангисты и культуристы. Повышение концентрации, например, гормона роста зависит от массы активных мышц, степени их активности, и психического напряжения.
Предполагается, что повышение концентрации ионов водорода вызывает лабилизацию мембран (увеличение размеров пор в мембранах, это ведет к облегчению проникновения гормонов в клетку), активизирует действие ферментов, облегчает доступ гормонов к наследственной информации, к молекулам ДНК. В ответ на одновременное повышение концентрации Кр и Н интенсивнее образуются РНК. Срок жизни и-РНК короток, несколько секунд в ходе выполнения силового упражнения плюс пять минут в паузе отдыха. Затем молекулы и-РНК разрушаются. Однако, анаболические гормоны сохраняются в ядре клетки несколько суток, по не будут полностью метаболизированы с помощью ферментов лизосом и переработаны митохондриями до углекислого газа, воды, мочевины и др. молекул.
Теоретический анализ показывает, что при выполнении силового упражнения до отказа, например 10 приседаний со штангой, с темпом одно приседание за 3–5 с, упражнение длится до 50 с. В мышцах в это время идет циклический процесс: опускание и подъем со штангой 1–2 с выполняется за счет запасов АТФ; за 2–3 с паузы, когда мышцы становятся мало активными (нагрузка распространяется вдоль позвоночного столба и костей ног), идет ресинтез АТФ из запасов КрФ, а КрФ ресинтезируется за счет аэробных процессов в ММВ и анаэробного гликолиза в БМВ. В связи с тем, что мощность аэробных и гликолитических процессов значительно ниже скорости расхода АТФ, запасы КрФ постепенно исчерпываются, продолжение упражнения заданной мощности становится невозможным — наступает отказ. Одновременно с развертыванием анаэробного гликолиза в мышце накапливается молочная кислота и ионы водорода (в справедливости высказываний можно убедиться по данным исследований на установках ЯМР). Ионы водорода по мере накопления разрушают связи в четвертичных и третичных структурах белковых молекул, это приводит к изменению активности ферментов, лабирализации мембран, облегчению доступа гормонов к ДНК. Очевидно, что чрезмерное накопление или увеличение длительности действия кислоты, даже не очень большой концентрации, может привести к серьезным разрушениям, после которых разрушенные части клетки должны будут элиминироваться. Заметим, что повышение концентрации ионов водорода в саркоплазме стимулирует развитие реакции перекисного окисления. Свободные радикалы способны вызвать фрагментацию митохондриальных ферментов, протекающую наиболее интенсивно при низких, характерных для лизосом, значениях рН. Лизосомы участвуют в генерации свободных радикалов, в катаболических реакциях. В частности, в исследовании А.Salminen e.a. (1984) на крысах было показано, что интенсивный (гликолитический) бег вызывает некротические изменения и 4–5 кратное увеличение активности лизосомальных ферментов. Совместное действие ионов водорода и свободного Кр приводит к активизации синтеза РНК. Известно, что Кр присутствует в мышечном волокне в ходе упражнения и в течение 30–60 с после него, пока идет ресинтез КрФ. Поэтому можно считать, что за один подход к снаряду спортсмен набирает около одной минуты чистого времени, когда в его мышцах происходит образование и-РНК. При повторении подходов количество накопленной и-РНК будет расти, но одновременно с повышением концентрации ионов Н, поэтому возникает противоречие, т.е. можно разрушить больше, чем потом будет синтезировано. Избежать этого можно при проведении подходов с большими интервалами отдыха или при тренировках несколько раз в день с небольшим числом подходов в каждой тренировке, как это имеет место в тренировке И. Абаджиева и А. Бондарчука.
Вопрос об интервале отдыха между днями силовой тренировки связан со скоростью реализации и-РНК в органеллы клетки, в частности в миофибриллы. Известно, что сама и-РНК распадается в первые десятки минут после упражнения, однако структуры, образованные на их основе, синтезируются в органеллы в течение 4–7 дней (очевидно, зависит от объема образованной за тренировку и-РНК, концентрации в ядре анаболических гормонов). В подтверждение можно напомнить данные о ходе структурных преобразований в мышечных волокнах и согласующихся с ними субъективных ощущениях после работы мышцы в эксцентрическом режиме, первые 3–4 дня наблюдаются нарушения в структуре миофибрилл (около Z-пластинок) и сильные болевые ощущения в мышце, затем МВ нормализуется и боли проходят. Можно привести также данные собственных исследований, в которых было показано, что после силовой тренировки концентрация Мо в крови утром натощак в течение 3–4 дней находится ниже обычного уровня, что свидетельствует о преобладании процессов синтеза над деградацией. Логика происходящего при выполнении силовой тренировки представляется в основном корректной, однако доказать ее истинность может лишь эксперимент. Проведение эксперимента требует затрат времени, привлечения испытуемых и др., а если логика окажется где-то порочной, то придется вновь проводить эксперимент. Понятно, что такой подход возможен, но мало эффективен. Более продуктивен подход с применением модели организма человека и имитационным моделированием физиологических функций и структурных, адаптационных перестроек в системах и органах. В нашем распоряжении теперь имеется такая модель, поэтому возможно в короткое время систематически изучать процессы адаптации на ЭВМ и проверять корректность планирования физической подготовки. Эксперимент же теперь можно проводить уже после того как будет ясно, что грубых ошибок в планировании не допущено.
Из описания механизма должно быть ясно, что ММВ и БМВ должны тренироваться в ходе выполнения разных упражнений, разными методиками.
В западной литературе, на основе данных опытов над животными, предлагают несколько механизмов гиперплазии миофибрилл в мышечных волокнах.
Например:
— растягивание мышц — важный стимул воздействия на ДНК и образования РНК. В 1944 г. Томсен и Луко зафиксировали суставы кошек, мышцы были растянуты. Произошло увеличение растянутых мышц в течение 7 дней. Давайте подумаем. Почему так быстро? Каково было влияние гормонов, ведь кошки находились в сильнейшем стрессе? В растянутой мышце и в гипсе было нарушено кровоснабжение, кошка эти мышцы напрягала, сопротивлялась – выполняла статодинамические упражнения сутками! Таким образом, в результате проделанного опыта были реализованы в организме основные факторы – повышена концентрация гормонов, мышцы были закислены, концентрация свободного креатина была повышена. А само растяжение мышцы было лишь предпосылкой для появления факторов стимулирующих гиперплазию миофибрилл. Поэтому информация (Голдспик с соавторами в 1991 г.) о росте массы мышцы кролика на 20% и содержания РНК в 4 раза, за 4 дня у кролика с растянутой мышцей, в гипсе, является прекрасным подтверждением теории гиперплазии миофибрилл изложенной нами.
Идея влияния растяжения на транскрипцию генов неоднократно проверялась, но ни один из авторов так и не проверили, а был ли стресс (конечно животное мучается), повысилась ли концентрация анаболических гормонов в крови и в тканях.
Так вот, на основании таких «животных» фактов Ю.В.Верхошанский и многие «теоретики» силовой подготовки на западе предложили идею выполнения спрыгивания с высоты 1,0–1,2 м для развития силы мышц разгибателей суставов ног. Очевидно, что травмирующий эффект этих упражнений намного превышает какой-либо полезный эффект.
— эксцентрическая тренировка более эффективна чем концентрическая. Этот результат был получен в работе Higbie, Elizabeth с соавторами (Journal of Applied Physiology 1994 г). После 30 тренировок на изокинетическом динамометре с интенсивностью 70%мак, по десять повторений с тремя подходами 3 раза в неделю. Одна группа тренировалась в концентрическом режиме работы мышц, а другая с эксцентрическим. В результате поперечник мышечных волокон вырос примерно одинаково — 15–20%, а сила на 12–14%, в эксцентрическом режиме тестирования у группы с эксцентрической тренировкой сила выросла на 34%.
Интерпретация результатов тренировки должна быть следующей. Продолжительность напряжения мышцы была 1 с, интервал отдыха 2с, количество повторений 10, поэтому затраты АТФ и КрФ и накопление ионов водорода были в обеих случаях примерно одинаковы. Для преодоления сопротивления в эксцентрическом режиме надо было рекрутировать больше ДЕ, поэтому в группе с эксцентрическим режимом тренировки должен был сформироваться особый навык выполнения упражнения, что и подтвердило тестирование. В обеих тренировках были созданы условия для гиперплазии миофибрилл в ГМВ – рост концентрации анаболических гормонов, появление свободного креатина, повышение концентрации ионов водорода в мышце. Следовательно, не форма упражнения влияет на гиперплазию миофибрилл, а биологические факторы стимулирующие транскрипцию ДНК (считывание информации с генов — наследственности). Кстати, изученный вариант тренировки оказался низкоэффективным, поскольку за 30 тренировок средний прирост силы составил 0,5% за тренировку. При правильной организации тренировки сила растет по 2% за тренировку.
2% - это при каком интервале отдыха между тренировками? Ведь Абаджиев рекомендовал своим подопечным 3-4 тренировки в день с максимальной и околомаксимальной нагрузкой 5 раз в неделю. Не мог же он добиваться прироста силы 30-40% в неделю?
Прирост силы по 2% наблюдается при выполнении классической силовой тренировки в динамическом режиме, интенсивность 70% ПМ, количество подъемов – до отказа (6-12 раз).
Интервал отдыха 3-5 мин, количество подходов 4-5 раз. Количество тренировок – один раз в неделю. Через 2 месяца   определяют прирост силы и делят на количество тренировок. Надо заметить, что прирост силы имеется только в гликолитических МВ. Поэтому у стайеров, у которых почти 100% ОМВ, очень плохо растут мышцы и их сила.
Абаджиев работал с выдающимися штангистами, у которых уже была гипертрофия, поэтому он решал задачу повышения эффективности проявления силы уже имеющимися мышцами. При этом преследовались две цели:
- техническая, научиться выполнять работу с предельными нагрузками,
- физическая, научиться рекрутировать высокопороговые ДЕ и их мышечные волокна. В этом случае в них происходит гиперплазия миофибрилл. Штангист выходит на пик спортивной формы при минимальном росте мышечной массы. Мышечные волокна высокопороговых ДЕ наименее тренированы, поэтому даже при использовании несовершенной методики происходит гиперплазия миофибрилл. В МВ низкопороговых ДЕ гипертрофия существенная, поэтому ежедневные многоразовые тренировки не вызывают в них существенной гиперплазии миофибрилл.
Подъем околомаксимальных весов (90-95%ПМ) без достижения исчерпания КрФ и повышения концентрации ионов водорода не может вызвать гиперплазии, но повторение околомаксимальных упражнений в течение дня 4-6 раз приводит к суммации эффектов (концентрации анаболических гормонов в ядрах активных МВ).

(Продолжение следует)

 

Список  сокращений
АТФ – аденозинтрифосфорная кислота
АДФ – аденозиндифосфорная кислота
МПК – максимальное потребление кислорода
АнП – анаэробный порог
АэП – аэробный порог
МВ – мышечное волокно
ГМВ – гликолитическое  мышечное волокно
ОМВ – окислительное  мышечное волокно
ДНК – дезоксирибонуклеиновая кислота
КПД – коэффициент полезного действия
КрФ – креатин фосфат
Кр – креатин
Ф – неорганический фосфат
и-РНК – информационная рибонуклеиновая кислота
рН – кислотно-щелочное равновесие
La  - лактат

Гиперплазия миофибрилл в окислительных волокнах


Автор: Андрей Антонов

В предыдущих наших статьях мы рассмотрели методы гиперплазии миофибрилл в мышечных волокнах в целом, и более подробно разобрали методы гиперплазии в гликолитических волокнах. Сегодня мы поговорим о гиперплазии миофибрилл в окислительных волокнах.  В  литературе эта тема практически не раскрыта. Существует мнение, что мышечные объемы и рост силы дает только гипертрофия быстрых мышечных волокон. А роль медленных волокон настолько ничтожна, что ей можно пренебречь. Поэтому в силовых и скоростно-силовых видах спорта силовая тренировка медленных мышечных волокон не рассматривалась. Насколько это соответствует действительности, мы узнаем в очередной нашей беседе с профессором Виктором Николаевичем Селуяновым.

Железный мир: Виктор Николаевич, действительно ли силовые возможности ММВ намного ниже, чем у БМВ?

Виктор Селуянов: Долгое время существовало мнение, что гипертрофия мышечных волокон не может превышать 30% от нормального состояния. Поэтому родилась идея, что у культуристов гипертрофия мышц обусловлена увеличением количества МВ. Поэтому в 70-80 гг. прошлого столетия начались поиски фактов подтверждающих эту идею (например, Груздь П.З. обнаружил расщепление гипертрофированных МВ).

В 90-е г. прошлого столетия шведский ученый Tesh с соавторами представил информацию о мышечной композиции у высококвалифицированных бодибилдеров. Ими было показано, что у нормального человека поперечное сечение МВ  в среднем составляет 3000-4000мкм2 , а у  спортсменов 6000-25000мкм2 . Это означает, что МВ могут быть гипертрофированы 4-6 раз, следовательно, идея об увеличении числа МВ у культуристов потеряла актуальность. Однако, остается идея об активации миосателлитов для увеличения числа МВ в мышцах у спортсменов.  Пока, практически  полезных результатов нет.

При правильной тренировке поперечное сечение ММВ и БМВ различаться не должны, поэтому проигрыша в силе быть не должно, а в скорости и мощности ММВ должны проигрывать, поскольку ниже активность миозиновой АТФ-азы.

Надо четко понимать, что многочисленные исследования показали, что сила тяги МВ зависит от его поперечного сечения (от количества миофибрилл в МВ). Удельная сила одинаковая у ребенка, взрослого, мужчины, женщины, бабушки и дедушки, а также у любого спортсмена.

ЖМ: Тренировка ММВ дает прибавку даже в скоростно-силовых упражнениях. По Вашим работам я знаю, что после этого улучшались и результаты в прыжках с места. Не могли бы Вы рассказать об этом подробно?

ВС: Максимальная скорость сокращения    ММВ и БМВ различается на 20-40% , скорость  сокращения в реальных спортивных действиях составляет не более 50% от максимальной скорости сокращения мышцы, поэтому увеличение силы ММВ дает прибавку скорости и мощности практически в любых видах спортивной деятельности. Это возможно даже в спринтерском беге.

Мы провели с Виктором Тураевым специальное исследование, где выяснили, что 50% мощности в спринте выдают медленные волокна. Оказывается, бег на короткие дистанции - не самые быстрые движения, и ММВ работают там вполне комфортно. Мы проводили эксперимент с группой спринтеров ( 8 человек) и проводили тренировки на увеличение силы ММВ. Их результаты в беге на 100 м были улучшены на 0,2—0,3 секунды: имея средний результат 10,9, они стали бежать за 10,7.

ЖМ: А есть ли необходимость отдельно тренировать ММВ? Они имеют порог возбудимости ниже, чем у БМВ, соответственно всегда включаются в работу вместе с ними. Если мы будем проводить тренировку, направленную на гипертрофию БМВ, описанную в предыдущем номере журнала, то ММВ получат свою долю нагрузки.

ВС: Это правильно, при тренировке    БМВ обязательно функционируют и ММВ. Однако, во время выполнения силового упражнения с чередованием сокращения и расслабления мышц  в ОМВ не накапливаются ионы водорода, поскольку митохондрии их поглощают и преобразуют в воду. Отсутствие этого фактора тормозит проникновение анаболических гормонов в ММВ (ОМВ), поэтому при классической силовой тренировке не наблюдается существенной гипертрофии ММВ. Для того, чтобы убедиться в этом, надо открыть учебник «Физиология мышечной деятельности» (под ред. Я.М.Коца). Там есть таблица, из которой видно, что, по данным разных авторов, обычная силовая тренировка – для ГМВ, не дает существенного прироста гипертрофии ММВ (1тип)

ЖМ: Значит ли это, что представители силовых видов спорта, например пауэрлифтеры, не использующие в своих тренировках методику гиперплазии миофибрилл в ОМВ,  имеют неиспользованный резерв в развитии силы? И включив данную методику в свои тренировки, гарантированно увеличат свои силовые результаты?

ВС: В тех видах спорта, где собственный вес не учитывается, например, в бодибилдинге, выгодно увеличивать силу , набирать массу за счет ОМВ (ММВ). В этом случае спортсмен работает с непредельными весами, поэтому минимизируется травматизм. Выгодно увеличивать силу ММВ (ОМВ) в армреслинге, поскольку рост массы мышц рук идет, но его можно компенсировать снижением массы тела за счет жира или массы мышц ног. Одновременно с ростом силы ОМВ (ММВ) идет рост массы митохондрий, увеличивается локальная мышечная выносливость, а это очень важно для армреслинга и для любых других видов единоборств.

В пауэрлифтинге при выполнении приседа или тяги штанги выгодно использовать резерв увеличения силы тяги ОМВ (ММВ), поскольку они ничем не хуже БМВ (скорость сокращения мышц очень низкая). Выгодно, потому, что вес отягощения составляет 40-60% от ПМ, поэтому нет условий для получения травм и можно работать до отказа, т.е. до сильного стресса, выделения в кровь собственных анаболических гормонов (частичная замена приему ААС).

ЖМ:  Ну что ж, настало время поговорить о самой методике. Тем более, что насколько я знаю вы являетесь ее автором и разработчиком.

ВС: Да, данная методика была разработана в нашей лаборатории.  Она  похожа на ранее описанную методику для БМВ. Основным отличительным условием является требование выполнять упражнение без расслабления тренируемых мышц. В этом случае напряженные и утолщенные МВ пережимают капилляры (Физиология мышечной деятельности, 1982), вызывают окклюзию (остановку кровообращения). Нарушение кровообращения ведет к гипоксии МВ, т.е. интенсифицируется анаэробный гликолиз в ММВ (ОМВ), в них накапливается лактат и Н. Очевидно, что создать такие условия можно при работе против силы тяжести или тяги резинового амортизатора.

Приведем пример такого упражнения. Выполняются приседания со штангой 30-70% ПМ. Спортсмен из глубокого приседа встает до угла в коленных суставах 90-110 град:

интенсивность —30-70%, когда тренируют мышцы рук, в которых мало ОМВ, интенсивность меньше  10- 40%,

продолжительность упражнения — 30- 60 с (отказ из-за болей в мышце),

интервал отдыха между подходами — 5 -10 мин (отдых должен быть активным),

число подходов к снаряду — 7- 12,

количество тренировок в день: одна, две и более,

количество тренировок в неделю: упражнение повторяется через 3- 5 дней.

Правила могут быть обоснованы следующим образом. Интенсивность упражнения выбирается такой, чтобы были рекрутированы только ОМВ (ММВ). Продолжительность упражнения не должна превышать 60 с, иначе накопление Н может превысить оптимальную концентрацию для активации синтеза белка, а скорость катаболизма  может превысить процессы строительства новых структур клеток.

Эффективность методики тренировки может быть повышена.  Для этого надо увеличить время пребывания в ОМВ (ММВ) Кр и Н. Поэтому  следует выполнять упражнение в виде серии подходов, а именно: первый подход не до отказа (секунд 30), затем — интервал отдыха 30 с. Так повторяется три или пять раз, затем выполняется длительный отдых или упражняется другая мышца. Преимущество такого упражнения (в культуризме его называют "суперсерией") заключается в том, что Кр и Н присутствуют в ОМВ (ММВ) как в ходе упражнения, так и в паузах отдыха. Следовательно, суммарное время действия факторов (Кр, Н), вызывающих образование и РНК, значительно увеличивается в сравнении с ранее описанными вариантами тренировки.

Увеличение концентрации ионов водорода в ОМВ не может вызвать существенного катаболизма, поскольку  в  ОМВ много митохондрий и они очень быстро поглощают их. В ГМВ митохондрий мало, поэтому ионы водорода там остаются надолго и вызывают там сильнейшие разрушения – катаболизм.

То, что эта методика работает убеждает не только теория, но и практика тренировки выдающихся спортсменов. Например, Василий Алексеев – штангист  тяжеловес, имел проблемы в поясничном отделе позвоночника, поэтому не мог выполнять тяги с большими весами. В итоге он нашел секретное упражнение, никому не разрешал его показывать. Он заходил в зал, всех выгонял, закрывался. Ложился на коня бедрами, лицом вниз, и выполнял наклоны с небольшой амплитудой (статодинамический режим работы мышц), для увеличения нагрузки на плечи брал штангу 40-60 кг. Понятно, что позвоночник был разгружен, была тренировка ОМВ мышц разгибателей спины. Другой пример – Арнольд Шварценеггер, основу его тренировок составляли тренировки в режиме «пампинга», т.е. накачки мышц кровью. Эти упражнения делаются без расслабления мышц (статодинамический режим), поэтому происходит быстрое закисление ОМВ.  В момент отдыха это  приводит к рефлекторному расслаблению гладкой мускулатуры артериол, накоплению крови в мышцах (пампинг). Идея прихода питательных веществ с кровью неконструктивна, а приход анаболических гормонов, закисление ОМВ и множество свободного креатина стимулируют образование в ядрышках РНК.

ЖМ: Как быстро после таких тренировок происходит гипертрофия ОМВ (ММВ)?

ВС: Нужно учитывать, что медленные волокна могут занимать всего треть мышцы, а поперечник медленных мышечных волокон, как правило, на 30-40% процентов меньше быстрых. Поэтому это происходит сначала незаметно, так как растет плотность миофибрилл, за счет появления новых, потом растет и поперечник МВ, когда вокруг новых миофибрилл появляются митохондрии. Но митохондрии занимают всего 10% общего объема мышцы. Основной рост - за счет миофибрилл. Экспериментально показано, что при правильно организованной тренировки происходит рост силы на 2% за тренировку. Надо заметить, что более одной развивающей  тренировки в неделю  выполнять нельзя, поскольку при более частых тренировках рост силы тормозится.

ЖМ: Допустимо ли при такой тренировке, чтобы отказ возникал не из-за болевых ощущениях в мышце, а,  как и при тренировки ГМВ,  из-за мышечного отказа? Например,  спортсмен сделал  3 подхода по 30 сек с интервалом отдыха 30 сек упражнение жим штанги лежа по ограниченной траектории движения, и в последнем подходе на 29-й секунде произошел мышечный отказ, штанга поползла вниз, поскольку даже удержать ее в статическом положении спортсмен ее уже не мог.  При этом мышечная боль была умеренной.  Будет ли такая тренировка направлена на гиперплазию ОМВ, или рекомендуется снизить вес штанги и делать, например, 3 по 40 секунд,  что бы причиной отказа все-таки стало сильное жжение в  мышце?

ВС: При выполнении силовых упражнений надо считать не количество подъемов, не тонны – это формальные критерии. В каждом подходе надо вызывать в организме определенный физиологические и биохимические процессы, о содержании которых спортсмен может догадываться по ощущениям. При тренировке ОМВ правильное ощущение боль в активной мышце, которая наступает в результате накопления ионов водорода в них. Это главное условие для активизации синтеза белка. Вместе с болью появляется стресс и выход   анаболических гормонов в кровь. В достоверности этой информации можно убедиться по публикациям ИМБП в журнале Физиология человека (рук. Д.б.н. Виноградова О.Л.).   В данном  примере, а именно, в работе продолжительностью 3 х 30 сек. с мышечным отказом, вес снаряда завышен, поэтому рекрутируются не только ОМВ, но и ПМВ, и часть ГМВ. Такой вариант тоже имеет право на существование, только эффект роста силы ОМВ будет несколько меньше

ЖМ:  Но все равно слишком большой разброс времени выполнения упражнения – от 30 до 60 сек. в подходе. Поэтому возникает следующий вопрос: если в указанном примере спортсмен достигает мышечного отказа при 30 сек. работы в третьем подходе, то какой временной отрезок ему выбрать? Ведь он может подобрать вес до ощущения сильного жжения выполняя  и 3 х 45 сек., и еще снизив вес 3 х 60 сек..

ВС: Критерием корректного выполнения упражнения является накопление в ОМВ молочной кислоты в оптимальной концентрации (10-15мМ/л), в крови будет меньше. Это возможно при статодинамическом режиме работы мышц и ограничении продолжительности выполнения упражнения. Эксперименты показывают, что оптимальная продолжительность стато-динамического режима находится в пределах 30-60с и если в это время спортсмен испытывает сильный стресс из-за болевых ощущений, то условия для роста силы ОМВ достигнуты. Поскольку  ионы водорода могут усиливать катаболизм, то необходимо стремиться к более раннему возникновению боли в мышцах, т.е. ближе к 30с.

ЖМ: В You-Tube есть ролики, где вы проводите   семинар с борцами. Там вы всячески предостерегаете спортсменов от чрезмерного закисления, так как оно ведет к разрушению митохондрий. Если спортсмен регулярно тренируется по Вашей методике и работает до отказа из-за сильнейшего жжения в мышцах на сожжёт ли он все свои митохондрии?

ВС: Ранее эту проблему мы уже обсуждали, здесь сделаем акцент на том, что в разных типах МВ ионы водорода вызывают специфическую реакцию. Действие ионов водорода (Н) обусловлено концентрацией и длительностью присутствия в МВ. В ОМВ, даже при наличии высокой концентрации ионов водорода, в период отдыха митохондрии быстро устраняют их, поэтому повредить митохондрии и другие структуры МВ ионы водорода не успевают. Об этом говорят величины креатифосфокиназы и кортизола в крови после тренировки. Эти величины, как правило,  в 2-3 раза ниже по сравнению с обычными силовыми упражнениями. В ГМВ  после классической силовой тренировки (динамической с интенсивностью 70-80%ПМ) ионы водорода не поглощаются митохондриями (их слишком мало), ионы Н соединяются с лактатом и молочная кислота медленно выходят в кровь 10-60 мин. Активный отдых ускоряет выход молочной кислоты в кровь. Поэтому митохондрии и другие структуры подвергаются  длительному разрушающему влиянию. Поэтому борцам нельзя тренироваться с сильным закислением, надо беречь митохондрии в ГМВ, от них зависит локальная мышечная выносливость борца.

ЖМ: Приведите пример тренировочного цикла.

ВС: Результаты имитационного моделирования показали, что одним из рациональных вариантов тренировки является цикл, в котором одна тренировка носит развивающий характер, через три дня силовая тренировка повторяется, но уже в меньшем объеме ("тонизирующая" тренировка), всего цикл составил семь дней. Одним из достоинств такого цикла является то, что он может использоваться специалистами видов спорта на "выносливость". В дни отдыха могут использоваться тренировки для развития в МВ митохондрий или тренировки миокарда, диафрагмы. Эффективность теоретически разработанного микроцикла была проверена в ходе педагогического эксперимента.

Методика. Семь студентов ИФК (длина тела 177,3±11,8 см; масса тела 71,7±9,7 кг; возраст 25,0±4,8 г) два раза в неделю, в течение шести недель выполняли силовые тренировки и два раза в неделю выполняли аэробные тренировки по 40-50 мин с ЧСС АэП.

Первая силовая тренировка включала три серии по три подхода в каждой. Отдых между сериями был активный - 12 мин, между подходами 30 с. В каждом подходе упражнение выполнялось до отказа, длительность приседания со штангой составляла 60-70 с. Приседание выполнялось в статодинамическом режиме.

Вторая силовая тренировка включала только четыре подхода с интервалом активного отдыха 8 мин, вес штанги и условия приседания были теми же, что и в первой тренировке.

Результаты. За период исследования испытуемые стали сильнее, они смогли поднять более тяжелую штангу: до 866±276 Н, после эксперимента 1088±320 Н (различия достоверны при р<0,001). Средний прирост силы составил 222 Н (25,6%) или 2,1%/тр.день. Последний показатель должен характеризовать эффективность силовой тренировки, с его помощью можно сравнивать различные методы. В обзорной работе М.McDonagh and С.Davies (1984) было проведено сравнение изотонического и изометрического методов силовой тренировки в различных вариантах, в частности, было показано, что изотоническая тренировка дает прирост силы 0,4-1,1% за один тренировочный день, изометрическая - 0,9-1,1% за тренировочный день. Другие исследователи добивались лучших показателей 2-3%, однако они использовали примерно такую же методику: интенсивность 80%; количество сокращений мышцы за тренировку 12-18; 21-24 тренировочных дня.

Таким образом, эффективность разработанной методики силовой тренировки выше изометрических методов и изотонических, за исключением тех, которые по технологии совпадают с  разработанной здесь. Следовательно, модель адекватно имитирует процессы синтеза миофибрилл как результат силовой тренировки.

ЖМ: Возможно ли в одной тренировке совмещать упражнения на ГМВ и ОМВ для одной мышечной группы?

ВС: Принципиальных возражений нет, важно учитывать:

- резервные возможности эндокринной системы,

- сначала надо тренировать ГМВ, поскольку подъем больших весов требует свежести ЦНС, и нормального состояния вспомогательных мышц.

ЖМ: Вы можете привести пример как в недельном или двухнедельном цикле совместить тренировки  направленные на гипертрофию ГМВ и ОМВ для одной мышечной группы?

ВС: Предположим, что идет речь о силовой подготовке в армреслинге. В качестве средства подготовки выбираем тягу груза через блок в условии имитации соревновательного упражнения. Тренируем ОМВ, значит выполняем статодинамическое упражнений с усилием 60%ПМ до боли (30с), через интервал отдыха 30с повторяем этот цикл 3-6 раз (зависит от уровня локальной мышечной выносливости).

Затем идет большой интервал отдыха (10 мин). В это время надо сделать приседание со штангой  в статодинамическом режиме  1 – 2 подхода. Это необходимо, поскольку при активности больших мышечных групп выделяется больше гормонов, по сравнению с работой мышц рук.

Этот цикл суперсерии повторяется 4-9 раз, в зависимости от уровня локальной мышечной выносливости.

Такая развивающая силовая тренировка   для гиперплазии миофибрилл ОМВ выполняется не чаще одного раза в неделю. Через 2-4 дня можно выполнить тонизирующую тренировку, которая в точности повторяет развивающую, но число подходов меньше в 3-5 раз.

Тренировка ГМВ обеспечивается в армреслинге собственно в рамках технико-тактической подготовки. Например, при отработке стартового усилия формируются навыки активации всех двигательных единиц  (ДЕ) и одновременно роста силы ГМВ высокопороговых  ДЕ.

Если имеется потребность в выполнении специальный тренировок для увеличения силы ГМВ, то эти тренировки, развивающего характера, должны выполняться перед тонизирующей тренировкой для поддержания процессов синтеза в ОМВ. Проявление больших усилий требует полного восстановления мышц, поэтому динамические силовые тренировки лучше выполнять после дня отдыха. В дальнейшем идет процесс восстановления – 2-3 дня, поэтому можно выполнять силовую тонизирующую тренировку для ОМВ.

ЖМ: Сколько всего мышечных групп по данной методике можно тренировать в одной тренировке?

ВС: У квалифицированного спортсмена число подходов к весу составляет 30-60 раз. На это уходит 60-90 мин. В большой интервал отдыха (10 мин) можно вставить тренировочные упражнения еще для 2 мышечных групп. Следовательно, за одну силовую тренировку можно проработать 3 мышечные группы, например, одна крупная и две мелкие или средние.  Другие мышечные группы можно тренировать в этот же день или в другие дни. Суммарный объем силовых тренировок определяется состоянием эндокринной системы. Известно, если принять  реакцию эндокринной системы после первой силовой  тренировки за 100%, то после второй силовой тренировки, в тот же день, концентрация   анаболических гормонов в крови ниже в 2-3 раза. Поэтому лучше мышечные группы  и силовые тренировки распределить на несколько дней. Заметим, что при использовании анаболических стероидов объем силовых упражнений может быть существенно увеличен.

ЖМ: Спасибо Вам за очень интересное интервью! Надеюсь, что представители всех силовых направлений найдут в нем для себя много интересного.

 

Страница 3 из 4